Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ultrason Sonochem ; 97: 106463, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2328013

RESUMEN

Water pollution management, reduction, and elimination are critical challenges of the current era that threaten millions of lives. By spreading the coronavirus in December 2019, the use of antibiotics, such as azithromycin increased. This drug was not metabolized, and entered the surface waters. ZIF-8/Zeolit composite was made by the sonochemical method. Furthermore, the effect of pH, the regeneration of adsorbents, kinetics, isotherms, and thermodynamics were attended. The adsorption capacity of zeolite, ZIF-8, and the composite ZIF-8/Zeolite were 22.37, 235.3, and 131 mg/g, respectively. The adsorbent reaches the equilibrium in 60 min, and at pH = 8. The adsorption process was spontaneous, endothermic associated with increased entropy. The results of the experiment were analyzed using Langmuir isotherms and pseudo-second order kinetic models with a R2 of 0.99, and successfully removing the composite by 85% in 10 cycles. It indicated that the maximum amount of drug could be removed with a small amount of composite.


Asunto(s)
Contaminantes Químicos del Agua , Zeolitas , Azitromicina , Zeolitas/química , Contaminantes Químicos del Agua/química , Termodinámica , Cinética , Adsorción , Agua , Preparaciones Farmacéuticas , Concentración de Iones de Hidrógeno
2.
Int J Nanomedicine ; 18: 2307-2324, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2315052

RESUMEN

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials. Methods: Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined. Results: We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials. Conclusion: This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.


Asunto(s)
COVID-19 , Zeolitas , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Antivirales/farmacología , Antivirales/uso terapéutico , Plata/química , Cobre , Compuestos de Amonio Cuaternario , Compuestos de Benzalconio , Suspensiones , Nitratos , Textiles , Zinc , Poliésteres
3.
ACS Appl Mater Interfaces ; 14(46): 52334-52346, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: covidwho-2117028

RESUMEN

The high antibacterial and antiviral performance of synthesized copper(I) oxide (Cu2O) incorporated in zeolite nanoparticles (Cu-Z) was determined. Various Cu contents (1-9 wt %) in solutions were loaded in the zeolite matrix under neutral conditions at room temperature. All synthesized Cu-Z nanoparticles showed high selectivity of the cuprous oxide, as confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. An advantage of the prepared Cu-Z over the pristine Cu2O nanoparticles was its high thermal stability. The 7 and 9 wt % Cu contents (07Cu-Z and 09Cu-Z) exhibited the best activities to deactivate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The film coated with 07Cu-Z nanoparticles also had high antiviral activities against porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, the 07Cu-Z-coated film could reduce 99.93% of PEDV and 99.94% of SARS-CoV-2 viruses in 5 min of contact time, which were higher efficacies and faster than those of any previously reported works. The anti-SARS-CoV-2 virus film was coated on a low-cost PET or PVC film. A very small amount of cuprous oxide in zeolite was used to fabricate the antivirus film; therefore, the film was more transparent (79.4% transparency) than the cuprous oxide film or other commercial products. The toxicity of 07Cu-Z nanoparticles was determined by a toxicity test on zebrafish embryo and a skin irritation test to reconstruct a human epidermis (RhE) model. It was found that the impact on the aquatic environment and human skin was lower than that of the pristine Cu2O.


Asunto(s)
COVID-19 , Nanopartículas , Zeolitas , Humanos , Porcinos , Animales , Zeolitas/química , SARS-CoV-2 , Óxidos , Pruebas de Sensibilidad Microbiana , Pez Cebra , Cobre/farmacología , Cobre/química , Nanopartículas/química , Antibacterianos/química , Bacterias Grampositivas , Antivirales/farmacología
4.
Pol J Vet Sci ; 25(3): 437-446, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-2056865

RESUMEN

Calf diarrhea continues to be the major problem of calves in the neonatal period. The effect of zeolites has been increasingly studied in ruminant health in recent years. In the present study, the efficacy of cristobalite, a zeolite, in neonatal calf diarrhea was studied first time. For this purpose, twenty-five neonatal calves with diarrheas were divided into two groups, and Group 1 (n=12) received conventional treatment and Group 2 (n=13) received cristobalite (Zoosorb 10 mg/kg) orally 3 times a day in addition to conventional treatment. Escherichia coli k99 and CS31a, bovine rotavirus and bovine coronavirus were isolated from fecal samples at the beginning of the treatment, on the third day and before discharge. It was determined that the recovery period in Group 2 was 0.95 (20.6%) days shorter than in Group 1 (p⟨0.05) while no viral agents were found on the fifth day in Group 2, viral shedding continued in 4 of 5 calves in Group 1. In conclusion, the study revealed that cristobalite speeds the recovery time and possibly decreases viral shedding in neonatal calf diarrhea, demonstrating a remarkable efficiency in the treatment.


Asunto(s)
Enfermedades de los Bovinos , Zeolitas , Animales , Animales Recién Nacidos , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Escherichia coli , Heces , Dióxido de Silicio
5.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1686814

RESUMEN

A chabazite-type zeolite was prepared by the hydrothermal method. Before ion exchange, the chabazite was activated with ammonium chloride (NH4Cl). The ion exchange process was carried out at a controlled temperature and constant stirring to obtain ion-exchanged chabazites of Ti4+ chabazite (TiCHA), Zn2+ chabazite (ZnCHA), Cu2+ chabazite (CuCHA), Ag+ chabazite (AgCHA) and Au3+ chabazite (AuCHA). Modified chabazite samples were characterized by X-ray diffraction (XRD), scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), N2 adsorption methods and UV-visible diffuse reflectance spectroscopy (DRS). XRD results revealed that the chabazite structure did not undergo any modification during the exchange treatments. The photocatalytic activity of chabazite samples was evaluated by the degradation of methylene blue (MB) in the presence of H2O2 under ultraviolet (UV) light illumination. The photodegradation results showed a higher degradation efficiency of modified chabazites, compared to the synthesized chabazite. CuCHA showed an efficiency of 98.92% in MB degradation, with a constant of k = 0.0266 min-1 following a first-order kinetic mechanism. Then, it was demonstrated that the modified chabazites could be used for the photodegradation of dyes.


Asunto(s)
Azul de Metileno/química , Contaminantes Químicos del Agua/química , Zeolitas/química , Fotólisis , Zeolitas/síntesis química
6.
Environ Res ; 204(Pt B): 112036, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1415387

RESUMEN

A practical scale photocatalytic air purifier equipped with a TiO2/H-ZSM-5 composite bead filter was demonstrated to be able to effectively remove indoor volatile organic compounds (VOCs) and viruses with sustainable performances under UVA-LED illumination. TiO2 hybridized with 5 wt% H-ZSM-5 zeolite significantly enhanced its photocatalytic activity for degrading VOCs including formaldehyde, acetaldehyde, and toluene, than bare TiO2. H-ZSM-5 provided strong adsorption sites for these compounds, thus accelerating their photocatalytic conversion into CO2 by adjacent TiO2 photocatalyst. Moreover, owing to its superior adsorption capacity, the composite bead filter completely prevented the emission of formaldehyde produced by photocatalytic oxidation of toluene. The sustainability of this composite bead filter for VOC removal was confirmed by regeneration and accelerated durability tests. In addition, the photocatalytic air purifier was effective in removing aerosolized viral particles of bacteriophage Phi-X 174. It was confirmed that the viruses on filter surfaces were completely inactivated by photocatalytic oxidation. TiO2/H-ZSM-5 composite beads also exhibited excellent efficacies for inactivation of pathogenic coronaviruses including SARS-CoV-2. The photocatalytic process degraded viral RNAs of SARS-CoV-2 by more than 99.999% in 1 h, eliminating the viral infectivity. Results of this study suggest that the air purifier equipped with the composite bead filter is ready for practical applications for home and hospital uses.


Asunto(s)
Filtros de Aire , COVID-19 , Compuestos Orgánicos Volátiles , Zeolitas , Catálisis , Humanos , SARS-CoV-2 , Titanio , Inactivación de Virus
7.
Water Sci Technol ; 84(3): 763-776, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1323037

RESUMEN

The objective of this work was to evaluate the photocatalytic activity of zinc oxide catalysts supported on natural zeolite clinoptilolite for photocatalytic degradation of the drug hydroxychloroquine, used in the treatment of malaria and which has been tested in the treatment of COVID-19. To synthesize 10%ZnOCP and 15%ZnOCP catalysts, the wet impregnation methodology was used. The raw and synthesized catalysts were characterized by XRD, SEM, XRF, BET, DRS, PCZ, FT-IR and PL. The degradation of hydroxychloroquine was calculated using UV-vis absorption from the samples before and after the photocatalytic process. The maximum percentage of degradation (96%) was obtained with the operational parameters of C0 = 10 mg L-1; Ccat = 2 g L-1 of 15%ZnOCP; pH = 7.5; UV-A radiation. Ecotoxicological tests against the bioindicators Lactuca sativa and Artemia salina confirmed the reduction of effluent toxicity after treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Zeolitas , Óxido de Zinc , Catálisis , Humanos , Hidroxicloroquina , SARS-CoV-2 , Espectroscopía Infrarroja por Transformada de Fourier
8.
Adv Healthc Mater ; 10(18): e2100410, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1321674

RESUMEN

Enzyme-linked immunosorbent assay is widely utilized in serologic assays, including COVID-19, for the detection and quantification of antibodies against SARS-CoV-2. However, due to the limited stability of the diagnostic reagents (e.g., antigens serving as biorecognition elements) and biospecimens, temperature-controlled storage and handling conditions are critical. This limitation among others makes biodiagnostics in resource-limited settings, where refrigeration and electricity are inaccessible or unreliable, particularly challenging. In this work, metal-organic framework encapsulation is demonstrated as a simple and effective method to preserve the conformational epitopes of antigens immobilized on microtiter plate under non-refrigerated storage conditions. It is demonstrated that in situ growth of zeolitic imidazolate framework-90 (ZIF-90) renders excellent stability to surface-bound SARS-CoV-2 antigens, thereby maintaining the assay performance under elevated temperature (40 °C) for up to 4 weeks. As a complementary method, the preservation of plasma samples from COVID-19 patients using ZIF-90 encapsulation is also demonstrated. The energy-efficient approach demonstrated here will not only alleviate the financial burden associated with cold-chain transportation, but also improve the disease surveillance in resource-limited settings with more reliable clinical data.


Asunto(s)
COVID-19 , Estructuras Metalorgánicas , Zeolitas , Anticuerpos , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Humanos , SARS-CoV-2
9.
Environ Pollut ; 283: 117060, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1163727

RESUMEN

In this study, wasted mask is chosen as a pyrolysis feedstock whose generation has incredibly increased these days due to COVID-19. We suggest a way to produce value-added chemicals (e.g., aromatic compounds) from the mask with high amounts through catalytic fast pyrolysis (CFP). To this end, the effects of zeolite catalyst properties on the upgradation efficiency of pyrolytic products produced from pyrolysis of wasted mask were investigated. The compositions and yields of pyrolytic gases and oils were characterized as functions of pyrolysis temperature and the type of zeolite catalyst (HBeta, HY, and HZSM-5), including the mesoporous catalyst of Al-MCM-41. The mask was pyrolyzed in a fixed bed reactor, and the pyrolysis gases evolved in the reactor was routed to a secondary reactor inside which the zeolite catalyst was loaded. It was chosen 550 °C as the CFP temperature to compare the catalyst performance for the production of benzene, toluene, ethylbenzene, and xylene (BTEX) because this temperature gave the highest oil yield (80.7 wt%) during the non-catalytic pyrolysis process. The large pore zeolite group of HBeta and HY led to 134% and 67% higher BTEX concentrations than HZSM-5, respectively, likely because they had larger pores, higher surface areas, and higher acid site density than the HZSM-5. This is the first report of the effect of zeolite characteristics on BTEX production via CFP.


Asunto(s)
COVID-19 , Zeolitas , Catálisis , Calor , Humanos , Pirólisis , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA